
3 Equatorial Wave Theory
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demic Press, INC., 3rd edition, 511 pp.

Figure 7: Dispersion diagram for tropical Outgoing longwave radiation. Source:
www.cgd.ucar.edu,NOAA.

Equatorial waves are an important class of eastward and westward propagating
disturbances that are trapped about the equator (that is, they decay away from the
equatorial region). In a dispersion diagram for observed equatorial quantities, these
wave can be identified as regions of increased energy density (Fig. 7).

Diabatic heating by organized tropical convection may excite equatorial wave
motions (see Fig. 8). Through such waves the dynamical effects of convective storms
can be communicated over large longitudinal distances in the tropics. Such waves
can produce remote responses to localized heat sources. Furthermore, by influencing
the pattern of low-level moisture convergence they can partly control the spatial and
temporal distribution of convective heating. In order to introduce equatorial waves
in the simplest possible context, we here use a shallow-water model and concentrate
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Figure 8: Equatorial Kelvin and Rossby waves triggered by an SST-induced heating.
Source: Kucharski et al. 2008: A Gill-Matsuno-type mechanism explains the tropical
Atlantic influence on African and Indian monsoon rainfall. Q. J. R. Meteorol. Soc.
(2009), 135, 569-579, DOI: 10.1002/qj.406

on the horizontal structure.

3.1 The shallow water equations

The shallow water equations are a drastic simplification to the real atmospheric flow.
However, despite it’s simplicity it gives often a good insight into many atmospheric
wave phenomena. The basic assumptions in the shallow water model are

(i) The flow is incompressible ρ = const.

(ii) The flow is shallow enough so that the horizontal velocity components are
independent of height.

(iii) The flow is hydrostatic. Accelerations in the vertical direction may be ne-
glected.
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Let us consider the horizontal momentum equations 1 and the hydrostatic equa-
tion ??

∂u

∂t
+ (v · ∇)u = −1

ρ

∂p

∂x
+ fv (56)

∂v

∂t
+ (v · ∇)v = −1

ρ

∂p

∂y
− fu (57)

1

ρ

∂p

∂z
= −g , (58)

Further consider the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 . (59)

Integrating the hydrostatic equation from a height z to the top of the fluid leads to
(assuming the pressure is vanishing there)

∫ h(x,y,t)

z

∂p

∂z
dz = −

∫ h(x,y,t)

z
ρgdz , or (60)

−p(x, y, z, t) = −ρg[h(x, y, t)− z] . (61)

Thus the horizontal pressure gradient force in the equations of motion 56, 57 may
be expressed as

−1

ρ

∂p

∂x
= −g∂h

∂x
= −∂Φ

∂x
(62)

−1

ρ

∂p

∂y
= −g∂h

∂y
= −∂Φ

∂y
, (63)

where we have defined Φ(x, y, t) = gh(x, y, t). Thus, keeping in mind that there the
horizontal velocities do not depend on the vertical direction and ignoring the coriolis
term proportional to the vertical velocity, the horizontal equations of motion may
be written as

∂u

∂t
+ (v · ∇)u = −∂Φ

∂x
+ fv (64)

∂v

∂t
+ (v · ∇)v = −∂Φ

∂y
− fu , (65)

The number of dependent variables in Eqs. 64 and 65 is reduced to 3, (u, v,Φ).
Thus, if we have another equation only containing (u, v,Φ), then the system may
be complete. This is achieved by simplification of the continuity equation 59 and
vertical integration. First, we note that because of ρ = const, Eq. 59 reduces to

∂w

∂z
= −∇ · v . (66)
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If we integrate this equation vertically from 0 to h(x, y, t) we have

∫ h

0

∂w

∂z
dz = −

∫ h

0
∇ · v dz (67)

w(h) :=
dh

dt
=

∂h

∂t
+ v · ∇h = −(∇ · v)h (68)

Eq. 68 may as well be written as

∂Φ

∂t
+ v · ∇Φ = −Φ∇ · v . (69)

Eqs. 64, 65 and 69 build a complete set of differential equations for (u, v,Φ), and
are called the shallow water equations.

3.2 Linearization for an Equatorial β-plane

Now we linearize the set of equations 64, 65 and 69 about a motionless mean state
with height he on an equatorial β-plane. Generally speaking, the β-plane assumption
states that f = 2|ω| sinφ ≈ f0+βy, that is the sinφ-dependence is approximated lin-
early for a given latitude φ0 by a Taylor series expansion (therefore β = 2|ω|cosφ0/a;
a being the mean radius of the earth). If we set the base point at the equator we
have f0 = 0, therefore f ≈ βy.

∂u′

∂t
= −∂Φ′

∂x
+ βyv′ (70)

∂v′

∂t
= −∂Φ′

∂y
− βyu′ (71)

∂Φ′

∂t
= −ghe

(
∂u′

∂x
+
∂v′

∂y

)
, (72)

where the primed variables denote the perturbations from the basic state. This is
our basic set of linearized equations (with variable coefficients!) to study equatorial
wave dynamics. By adjusting the scale height he as well the ocean case may be
included.

Discuss Inertia-Gravity waves for extratropical situation and approximation f =
f0 = const, and assume u′(x, t), v′(x, t),Φ′(x, t).

3.2.1 Equatorial Rossby and Rossby-Gravity Modes

In order to find solutions to the linearized system 70, 71 and 72, we assume that the
y-dependence can be separated




u′

v′

Φ′


 =



û(y)
v̂(y)

Φ̂(y)


 ei(kx−νt) . (73)
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Substitution of Eq. 73 into 70-72 then yields a set of ordinary differential equations
in y for the meridional structure functions û, v̂, Φ̂:

−iνû = −ikΦ̂ + βyv̂ (74)

−iνv̂ = −∂Φ̂

∂y
− βyû (75)

−iνΦ̂ = −ghe
(
ikû+

∂v̂

∂y

)
. (76)

If Eq. 74 is solved for û = k/νΦ̂+ iβyv̂/ν and inserted into Eq. 75 and 76 we obtain

(β2y2 − ν2)v̂ = ikβyΦ̂ + iν
∂Φ̂

∂y
(77)

(ν2 − ghek2)Φ̂ + iνghe

(
∂v̂

∂y
− k

ν
βyv̂

)
= 0 . (78)

Finally, Eq. 78 is inserted into Eq. 77 to eliminate Φ̂, yielding a second-order
differential equation in the single unknown, v̂

∂2v̂

∂y2
+

[(
ν2

ghe
− k2 − k

ν
β

)
− β2y2

ghe

]
v̂ = 0 . (79)

We seek solutions of this equation for the meridional distribution of v̂, subject to the
boundary condition that the disturbance fields vanish for |y| → ∞. This boundary
condition is necessary since the approximation f ≈ βy is nor valid for latitudes
much beyond ±30◦, so that solutions must be equatorially trapped if they are to
be good approximations to the exact solutions on the sphere. Equation 79 differs
from the classic equation for a harmonic oscillator in y because the coefficient in
square brackets is not a constant but is a function of y. For sufficiently small y this
coefficient is positive and solutions oscillate in y, while for large y, solutions either
grow or decay in y. Only the decaying solutions, however, can satisfy the boundary
conditions.

It turns out that solutions to Eq. 79 which satisfy the condition of decay far from
the equator exist only when the constant part of the coefficient in square brackets
satisfies the relationship (which is as well the dispersion relation!)

√
ghe
β

(
−k
ν
β − k2 +

ν2

ghe

)
= 2n+ 1; n = 0, 1, 2, ...... (80)

which is a cubic dispersion equation determining the frequencies of permitted equa-
torially trapped free oscillations for zonal wave number k and meridional mode
number n. These solutions can be expressed most conveniently if y is replaced by
the nondimensional meridional coordinate

ξ =

(
β√
ghe

)1/2

y . (81)
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With the Eqs. 80 and 81, Eq. 79 becomes

∂2v̂

∂ξ2
+
(
2n+ 1− ξ2

)
v̂ = 0 . (82)

This is the differential equation for a quantum mechanical, simple harmonic oscilla-
tor. The solution has the form

v̂(ξ) = Hn(ξ)e−ξ
2/2 , (83)

where Hn(ξ) designates the nth Hermite polynomial. The first of these polynomials
have the values

H0 = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2 . (84)

Thus, the index n corresponds to the number of nodes in the meridional velocity
profile in the domain |y| < ∞. Inserting the solution 83 into Eq. 82 leads to
one of the defining differential equations for Hermite polynomials. In general, the
three solutions of Eq. 80 can be interpreted as eastward- and westward-moving
equatorially trapped gravity waves and westward-moving equatorial Rossby waves.
The case n = 0 (for which the meridional velocity perturbation has a gaussian
distribution centered at the equator) must be treated separately. In this case the
dispersion relationship 80 (which is something like a characteristic equation that
gives the ν(k)-dependence from which we may derive the phase velocities) factors as

(
ν√
ghe
− β

ν
− k

)(
ν√
ghe

+ k

)
= 0 . (85)

The root ν/k = −√ghe, corresponding to a westward-propagating gravity wave, is
not permitted since the second term in parentheses in Eq. 85 was explicitly assumed
not to vanish when Eqs. 77 and 78 were combined to eliminate Φ. The roots given
by the first term in parentheses in Eq. 85 are

ν = k
√
ghe

[
1

2
± 1

2

(
1 +

4β

k2
√
ghe

)1/2
]
. (86)

The positive root corresponds to an eastward-propagating equatorial inertio-gravity
wave, while the negative root corresponds to a westward-propagating wave, which
resembles an inertio-gravity wave for long zonal scale k → 0 and resembles a Rossby
wave for zonal scales characteristic of synoptic-scale disturbances. This mode is
generally referred to as a Rossby-gravity wave.

3.2.2 Equatorial Kelvin Waves

In addition to the modes discussed in the previous section, there is another equatorial
wave that is of great practical importance. For this mode, which is called the
equatorial Kelvin wave, the meridional velocity perturbation vanishes and Eqs. 74
to 76 are reduced to the simpler set
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−iνû = −ikΦ̂ (87)

βyû = −∂Φ̂

∂y
(88)

−iνΦ̂ = −ghe (ikû) . (89)

Eliminating Φ between Eq. 87 and Eq. 89, we see that the Kelvin wave dispersion
equation is that of the shallow-water gravity wave

c2 =

(
ν

k

)2

= ghe . (90)

According to Eq. 90 the phase speed c can be either positive or negative. But, if
Eq. 87 and Eq. 88 are combined to eliminate Φ we obtain a first-order equation for
determining the meridional structure

βyû = −c∂û
∂y

, (91)

which may be integrated immediately to yield

û = u0 e
−βy2/(2c) , (92)

where u0 is the amplitude of the perturbation zonal velocity at the equator. Equation
92 shows that if solutions decaying away from the equator are to exist, the phase
speed must be positive (c > 0). Thus Kelvin waves are eastward propagating and
have zonal velocity and geopotential perturbations that vary in latitude as Gaussian
functions centered on the equator. The e-folding decay width is given by

YK = |2c/β|1/2 , (93)

which for a phase speed c = 30 m s−1 gives YK = 1600 km. The meridional force
balance for the Kelvin mode is an exact geostrophic balance between the zonal
velocity and the meridional pressure gradient. It is the change in sign of the Coriolis
parameter at the equator that permits this special type of equatorial mode to exist.
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Figure 9: Illustration of Kelvin (upper panel) and Rossby-gravity (lower panel)
waves.
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Figure 10: Dispersion diagram for equatorial Rossby-gravity and Kelvin waves.
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