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We go back to the full (unapproximated) momentum equation 23

ρ
dv

dt
= −∇p− 2ρΩ× v − ρ∇φ−∇ · F , (141)

where F is the frictional tensor. Multiplying with the velocity gives

ρ
dk

dt
= −∇ · (pv + F · v) + p∇ · v − ρv · ∇φ+ F : ∇v , (142)

where k = 1/2(v · v) is the kinetic energy. We can reformulate equation 142 as
equation

ρ
d(k + φ)

dt
= −∇ · (pv + F · v) + p∇ · v + F : ∇v . (143)

The equation for internal energy is

ρ
du

dt
= −∇ · J− p∇ · v − F : ∇v . (144)

J can contain the radiative flux vector and the diffusive (molecular) heat flux and
these only heating terms for a one-component system in which no phase transitions
are possible. The addition of condensational heating is an approximation to a one-
component system and strictly possible only if more components are considered (dry
air, water vapour and liquid water). The pressure work term p∇·v may therefore be
interpreted as reversible conversion term between kinetic plus potential and internal
energy. The dissipational heating, F : ∇v, is just transferring energy into the
internal energy reservoir. The other terms are energy fluxes into the climate system.
If we for the time being assume a closed system, then these terms vanish after
an integration over the this system. In this case, we may assume that reservoirs of
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internal, potential and kinetic energy can only change by exchanging energy between
them.

Imagine an initial situation with a given temperature distribution, but without
motion (this is, for example, the typical initial condition of ICTP AGCM). How
much kinetic energy could the climate ’gain’ in such a situation? A naive estimation
would be u = cvT ≈ 2 · 105 J/kg as typical local value. However, experience tells
us that typical values of specific kinetic energy are about 102 J/kg, so that there
is an overestimation of a factor of about 1000 in this simple (an naive) approach.
Clearly, only a small portion of the large internal energy reservoir can be released
into kinetic energy. It is obvious that we have to consider differences with respect
to some reference state in order to define the proper amount of internal energy that
is available for conversion into kinetic energy. An approach like ∆u = cv∆T , where
∆T = T − Tr, with Tr some reference temperature, leads still to overestimations,
but has the even more severe problem of not being positively definite. Note that the
above arguments also apply to the potential energy, because of the proportionality
of their total amounts in the atmophere (P = R/cvU ; Exercise!). The problem
of identifying the energy available for conversion into kinetic energy is a classical
one. For the atmosphere, Lorenz (1955) has developed a new energy concept, called
Available Potential Energy. We can re-write the equations in a more suitable form:

ρ
dk

dt
= −∇ · (F · v)− v · (∇p+ ρ∇φ) + F : ∇v . (145)

ρ
d(u+ φ)

dt
= −∇ · (pv) + v · (∇p+ ρ∇φ) + Tρ

ds

dt
. (146)

s is the specific entropy, governing all irreversible processes (for an ideal gas we
have s = cplnθ). From these equations we see that in a hydrostatic atmosphere
(∇p = −ρ∇φ), there is no reversible conversion from the internal plus potential to
kinetic energy.

8.1 On Dry and Moist Static Energy

Before we move on to discuss the problem of the available potential energy, it is
useful to derive from these exact equations the (approximate) conservation law for
Dry Static Energy = h+φ (DSE; Eq. 132 from the lecture course on Earth System
Thermodynamics). Please note that

−∇ · (pv) = −ρ d
dt

(p/ρ) +
∂p

∂t
. (147)

With this adding Eq. (145) and Eq. (146) we get

ρ
d(k + u+ p/ρ+ φ)

dt
= ρ

d(k + h+ φ)

dt
=
∂p

∂t
−∇· (F ·v) +F : ∇v +Tρ

ds

dt
. (148)

This demonstrates that the DSE is approximately conserved for adiabatic-reversible
flow, for which kinetic energy changes are small compared to changes of enthalpy and
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potential energy, and for which the local pressure tendency is also sufficiently small.
These last approximations go along with the hydrostatic approximation which has
been made when deriving the dry static energy conservation (Eq. 132 of EST lecture
course).

If we consider a system with moisture, we may approximate it’s effect on the
thermodynamic energy equation 144 according to 95 by adding the term −Llv dmv

dt
on the rhs of Eq. 148. This, using the good approximation of Llv = const. leads to
the moist version of Eq. 148, Moist Static Energy = h+φ+Llvmv (MSE) equation:

ρ
d(k + h+ φ+ Llvmv)

dt
=
∂p

∂t
−∇ · (F · v) + F : ∇v + Tρ

ds

dt
. (149)

The conservation of MSE requires the same approximate conditions as the con-
servation of the DSE.

Let’s go back to derive the available potential energy. If in Eq. 146 we define a
function that just depends on entropy, T0(s), then it is possible to remove from the
internal plus potential energy a part that merely depends on entropy:

ρ
d(u+ φ− q0(s))

dt
= −∇ · (pv) + v · (∇p+ ρ∇φ) + (T − T0(s))ρ

ds

dt
, (150)

where q0(s) =
∫ s
sB
T0(s

′)ds′. Note that for isothermal processes, T0(s) = T , then
q0(s) = Ts+const. and u+φ−q0(s) = u−Ts+φ, and (u−Ts) is the Free Energy (
a famous quantity for available energy for isothermal processes). The interpretation
is that we can remove from the internal plus potential energy amounts a portion
that is not available for conversion into kinetic energy. However, the problem of the
positive definiteness of the useful energy u + φ − q0(s) remains. We have to use a
transformation of thermodynamic variables that guarantees positive definiteness in
the end.

8.2 Exergy transformation

The exergy transformation is usually applied to the internal energy u to provide a
positive quantity with properties of a thermodynamic potential (see Figure 46).

Application of this transformation to the energy u+ φ− q0 results in

eape = ∆u−∆q0 + pR∆α , (151)

where ∆ψ = ψ−ψR, where the subscript R indicates the reference state that depends
only on z. The quantity eape is the available potential energy first introduced by
Lorenz (1955) in a globally integrated form. It is a positive quantity the for a
closed volume and the only reversible production/destruction term is the conversion
to/from kinetic energy. This quantity therefore has all the required properties.
The reference state is arbitrary at this point, but following our idea of eape being
the available energy, it should be derived from a variational principle, minimizing
the volume integral of eape. However, for practical purposes, determination of the
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Figure 46: The convex internal energy, u, as a function of specific entropy, s, and
specific volume, α, in phase space. The exergy transformation is just the (always
positive) difference between u the tangente at the reference point.

reference state by, for example, horizontal averaging of temperature is sufficient.
All other reference state variables can be determined by vertically integrating the
hydrostatic equation for an ideal gas. Note that eape according to Eq. 151 becomes
the classical exergy in case of an isothermal reference temperature T0(s) = const. =
TR. Finally, for an ideal gas, the lowest order approximation of eape is

eape ≈
1

2

[
g2

N2
R

(
∆θ

θR

)2

+RTR
cv
cp

(
∆p

pR

)2
]

, (152)

where

N2
R :=

g

cp

dsR
dz

=
g2

c2p

[
TR
cp
− dTR

dz

(
dsR
dz

)−1]−1
. (153)

From Eq. 153 follows that eape is positive if the stratification of the reference state
is statically stable (N2

R > 0). For application of this concept to the general circula-
tion of the atmosphere this condition is certainly fulfilled (just look at a potential
temperature cross section in meridional and height direction, e.g. Fig. 3). However,
to a system where the stratification is unstable even in the horizontal average, the
available potential energy concept cannot be applied, and we have to return to other
methods of identifying useful energy. The balance equation for eape can be derived
by noting that

deape
dt

= (T − T0(s))
ds

dt
−∆p

dα

dt
+ ∆α

dpR
dt

(154)

The energy equations 145 and 146 can be reformulated in the following form

ρ
dk

dt
= −∇ · (∆pv + F · v) + ∆p∇ · v + ρ

∆α

αR
v · ∇φ+ F : ∇v (155)
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ρ
deape
dt

= −∆p∇ · v − ρ∆α

αR
v · ∇φ+ ρ

T − To(s)
T

q , (156)

where the abbreviation for diabatic processes Tds/dt = q has been used. The factor
(T − T0(s))/T = η may be interpreted as Carnot factor controlling the efficiency of
the energy gain for a given heating. It can be approximated to the first order as
(exercise!)

η ≈
(

g2

cpN2
R

∆θ

θR
+ TR

R

cp

∆p

pR

)
1

T
. (157)

The interpretation is then that the volume integrated generation of eape is de-
pendent of the correlation of η and q. It’s not the heating per se that is important,
but the differential heating has to be correlated with potential temperature pertur-
bations (dominant part in Eq. 157). On the other hand, frictional dissipation is the
main process that destroys kinetic energy. A few remarks are appropriate here. If
we forget for the time being about the approximative expressions given for an ideal
gas, eAPE , and its evolution equation are really very general for a stably stratified
one-component system. For example consider a simple solid body. We know from
experience that even if a differential heating is applied, the only process that may
result is heat diffusion (diabatic process), but certainly no kinetic energy can be
gained. Indeed, in case of a solid body the function q0(s) can chosen as the internal
energy u plus the constant potential energy, because T = T (s), therefore we can
define T0(s) = T . In case of a simple incompressible fluid, we can also identify
T0(s) = T and q0(s) can be chosen to equal to the internal energy, but the potential
energy may not be constant, because of fluctuations of surface height, and could
therefore provide the available potential energy.

To derive a slightly different formulation that has been derived by Lorenz (1955),
equation has to be integrated over the systems volume

∫

τ

deape
dt

dτ =

∫

τ

{
−pdα

dt
+ pRα∇ · v −

α

αR
v · ∇φ+

dφ

dt
+
T − To(s)

T
q

}
dτ , (158)

where dτ = ρdxdydz is a mass element. Using

p
dα

dt
=

d

dt
(pα)− αdp

dt

where α = 1/ρ. With P = R/cvU (see exercise 1!), it follows

∫

τ

deape
dt

dτ =

∫

τ

{
RT

p
ω +

T − To(s)
T

q

}
dτ , (159)

where the orographic term from the exercise has been ignored. This is the integral
available potential energy balance for a hydrostatic atmosphere that was first de-
rived by Lorenz (1955). Apart from the diabatic production term, which can be
reformulated for an idealized gas to get a formulation identical to Lorenz, this form
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is highlighting the conversion term to kinetic energy −ωRT/p, which states that
energy is converted into kinetic energy by rising of warm air and sinking of cold air.
This makes the conversion term positive on average. This process is lowering the
centre of mass of the atmosphere, thus releasing kinetic energy. In baroclinic waves,
warm air is typically moving northward, and cold air southward. This together with
the tendency for motions to be adiabatic, thus following lines of contant potential
temperature (see Fig. 3), means that the warm air moving to the north tends to rise
and the cold air moving to the south tends to sink, thus providing the conditions
for conversion of available potential energy into kinetic energy.

Figure 47: Distribution of classical Exergy and extended Exergy (local available
potential energy). Units are J/kg.

It is further possible to decompose the kinetic and available potential energy
in their zonal mean and eddy components (see Section 6.1), and to derive their
evolution equations. If we identify the global volume averages of k and eape and
their mean and eddy components as EK , E′K and EP , E′p then the resulting global
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Figure 48: Distribution of Carnot factors of Exergy and extended Exergy (local
available potential energy).

energy cycle according to Peixoto and Oort (1983) is shown in Fig. 49. As can be
seen most production going into Ep, but also a considerable part into E′P . These
are related to heating in equatorial regions and cooling in polar regions for EP , and
diabatic heat release in cyclones in case of E′P . The energy is then transformed
into eddy kinetic energy, E′K , from where most of the dissipation occurs. A smaller
part is transferred into mean kinetic energy EK , and eventually dissipated and also
transformed back into EP .

For the ocean we have a much simpler picture, mainly driver by atmospheric
winds and friction:

Exercises

1. Show that for a hydrostatic atmosphere the volume integral of potential energy
is proportional to the volume integral of internal energy, i.e. P = R/cvU .

77



Figure 49: The global atmospheric energy cycle for the global integrals of mean and
eddy available potential and kinetic energies (EP , E′P , EK , E′K), respecitvely.

(Hint: Use a partial integration!)

P =

∫ ∫

A

∫ ∞

Zs

ρgzdzdxdy =
R

g

∫ ∫

A

∫ ps

0
Tdpdxdy +

∫ ∫

A

Φsps
g

dxdy

2. Show that

T − T0(s) ≈
(

g2

cpN2
R

∆θ

θR
+ TR

R

cp

∆p

pR

)

in first order by developing T (s, p) and T0(s) in taylor series around a reference
state sR, αR. Hint: Note that ∂T/∂s = T/cp, ∂T/∂p = α/cp and

dT0
ds

(sR) =
dTR
dz

(
dsR
dz

)−1

.
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Figure 50: The global oceanic energy cycle therefore the global integrals of available
potential and kinetic energies.
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